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Calculation of Multiconductor Microstrip Line

Capacitances using the Semidiscrete Finite

Element Meth,o(d
Marat Davidovitz

Abstract-In the presented analysis partial finite element dlscretiza-
tion of the Poisson’s equation is implemented. The governing partial
differential equation is thus reduced to a coupled set of ordinary differ-
ential equations, wlich is solved analytically. Formulation of the solu-
tion with this technique is more general and versatile than with the
method of lines. The method of lines is derived as a special case of the
sernidkcrete finite element method.

INTRODUCTION

T HE EFFECTIVENESS of the method of lines (MOL) in

solving tnicros@ip problems has been amply demonstrated

by Pregla and his co-workers [1]. However, their technique is

based on the finite-difference method, and as such has several

inherent disadvantages. Among them are the need for special

considerations in implementing boundary conditions, transition

conditions at dielectric boundaries and edge conditions, as well

as inaccurate discretization of general curved boundaries. More-

over, in three-dimensional (3-D) problems the rectangular grids

used in the MOL discretization preclude truly local refinement

of the mesh. It is well known that these problems can be

overcome in the framework of the finite element method (FEM).

Therefore it may be useful to examine the feasibility of a

technique based on the partial discretization approach, as is the

MOL, in the context of the FEM. Such an approach is in fact

possible and will be examined here briefly. It is termed the

semidiscrete finite’ element method (SD-FEM), to distinguish it

from the standard, fully-discrete FEM.
As an example to demonstrate the technique, a two-dimen-

sional static problem for a microstrip line is formulated’ and

solved with the semidiscrete FEM. The method of lines formula-

tion for the same problem is outlined as a special case of the

SD-FEM.

II. FORMULATION

Consider a shielded multistrip transmission line with a strati-

fied dielectric substrate. The cross-section is shown in Fig. 1. In

order to evaluate the capacitances of the line shown in Fig. 1 it

is necessary to solve a boundary value problem governed by the

Poisson’s equation

v*@(x,\z) = – :P(x, z). (1)

In the preceding equation O( x, z) denotes the potential, En is
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Fig. 1. Shielded rnicrostrip lines in stratified dielectric medium.

the perrnittivity of the nth layer, and P( x, z) represents the

charge density distribution, defined as P( x, z) = U( x)6( z – z’)

if n = 1, and ~~(x, z) = O if n = 2. The boundary conditions

for the potential can be stated as follows:

4(X, z) = o atx=O, a; z=O, b (’2)

f$(x, z) = +~ if (x, z) eSi, i=l, m. (3)

Additional transition conditions must be enforced at the dielec-

tric interface (z = Zl). Solution of the posed problem yields

a(x) —the charge density distribution on the strips. The capacit-

ance matrix. elements can be then calculated using the standard

definition.

The development of SD-FEM solutions is based on a weak

statement of the problem. An appropriate weak formulation of

(1) requires f$(x, z) to satisfy

for all values of z and all weighting functions 4(x). The laller

are selected from a space of functions satisfying certain regular-

ity conditions ~.].

III. FINITE ELEMENT APPROXIMATION

A combination of numerical and analytical methods is utilized

to obtain a solution to (4). Initially, finite element techniques are

used to approximate the solution variation with x. The x-dom-

ain, i.e., the interval (O, a), is divided into a number of

subintervals or elements. This subdivision, together with certain

points—nodes–-within each element, is known as the finite
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element mesh. A set of low-order polynomial basis functions,

each spanning a small number of adjacent elements is generated.

This basis set is used in the application of the Galerkin method

to the formulation in (4). The sought solution is expanded

(interpolated) in terms of the constructed basis set { O,( x)}~ ~ as

follows

4(X, z) = Euj(z)oj(x) = J(x)u(z), (5)
j

where Uj( Z) is the value of the approximate solutions at, the jth

mesh node Xj, and @j(x) denotes the jth basis function. The

boldfaced letters represent matrix quantities and tilde denotes

transposition. As required in the Galerkin approach, representa-

tion (5) is substituted into the weak statement (4) and the weight

functions ~ = @i, i = 1, I? are used to test the resulting equa-

tion over the interval (O, a).

The outlined procedure yields the following system of N

coupled, ordinary differential equations in the N unknowns

Vj( z)

d2v(z)
B—

dz2
–Au(z) = –+S6(2 –Z’), (6)

where v, s are N x 1 vectors and A, B are sparse (banded),

symmetric, positive-definite N x N matrices, whose elements

are defined by

/

a d~l dbj

/

a

aij = ——dx; bij = cji@j dx;
~ dx dx o

/

a
Si = m+i dx. (7)

o

Note that the boundary term in (4) does not contribute to the

expressions in (7). This has been achieved by requiring that all

the weight functions be zero at x = O, a. Thus the boundary

condition on the side walls is satisfied. If the Neumann condi-

tions are stated, they can be incorporated by direct substitution

into the boundary term in (4). Since the integrals in (7) can be

easily evaluated in closed form, the CPU time required to fill the

matrices is negligible.

The differential equation set (6) can be solved analytically,

after the unknowns are decoupled by a linear transformation of

the solution v to the principal axis, as proposed in [1]. A very

expedient approach for solving the decoupled differential equa-

tions uses an analogy between the potential and its derivative

with respect to z on the one hand, and voltage and current on a

distributed transmission line on the other.

The boundary conditions at z = O, b, as well as the transition

conditions at dielectric interfaces, are applied in the process of

solving for V(z). The remaining boundary conditions on the

strips Si are enforced last. This is accomplished by matching the

elements of V(z) corresponding to nodes located on a particular

strip to the prescribed potential on that strip, i.e., Vj( z’) = @i if

Xj e Si. The result of this procedure is a matrix equation for

s—the elements of which are moments of the charge density

distribution U(x) with the weighting functions. After solving for

s, the total charge Qi on the ith strip is determined simply by

summing the elements of s corresponding to the given strip. A

more detailed derivation of the outlined solution, applied to a

3-D problem, can be found in [3].

IV. RELATIONSHIP WITH THE METHOD OF LINES

As mentioned in the Introduction, the MOL can be developed

as a special case in the framework of the SD-FEM. This merely

requires that the Poisson’s equation be recast in a slightly

different form, and a specific choice of basis functions. The

MOL analysis of the problem considered above has been car-

ried-out by Diestel [4]. His formulation can be reproduced using

the SD-FEM approach.

Let Poisson’s equation (1) be recast in the following form:

a~(x, Z)

ax –
Q(X, z) = o,

au(x, Z) a20(x, Z) p(x, z) o

ax
+

a22+6n=”
(9)

(8)

An appropriate weighted-residual statement for the MOL deriva-

tion i obtained by using ~(x) and ~(x) to test (8) and (9),
f

respectively, on the interval (O, a). The suggested procedure

yields

a ad(x, Z)

/[ ax – 1
(JJ(X, z) +(x) = o, (lo)

o

a ati(x, Z)

/’[

L%j(x, z)
+

1

+ p(x, z) –

ax a22
+(x) = o. (11)

o en

The MOL formulation follows from the weak statement of (10)

and (11) if the following basis-testing set of functions is selected:

@i(x), ii(x) = ~(ei, x - xi), i=l, N, (12)

‘j(x) ?+j(x) = ‘(hj, x – ‘j), i=l, N, (13)

where P( w, x – Xk) is the rectangular pulse function of width

w, centered at x = Xk. The use of two separate sets of basis-

testing functions in (10) and (11) to approximate the potential

and its derivative, is analogous to using two different systems of

lines in the context of MOL to evaluate the potential and its

derivative. Moreover, because the derivative of a pulse function

yields two impulse functions, the two sets of basis-testing func-

tions have to shifted and interlaced with respect to each other to

ensure well-posed integrals in (10) and (11). This shift also

facilitates the application of boundary conditions [1]. An exam-

ple demonstrating the positioning of the two basis sets for a

problem involving both Dirichlet and Neumann boundary condi-

tions is shown in Fig. 2.

V. NUMERICAL RESULTS

To test the validity and accuracy of the proposed technique,

numerical experiments were performed employing a piecewise-

linear basis set. The distribution of the nodes in the interval

(O, a) was determined using the formula stated by Diestel [4].

This particular nodal distribution happens to equidistribute the

error inherent in the linear interpolation of the solution, thus

minimizing the overall error. It would not, however, be optimal

when used with higher order polynomial basis functions. The

calculated capacitance matrix for a five-strip transmission line is

compared with the data computed by Diestel with the MOL. The

SD-FEM results are presented in Table I. The data were com-

puted using a total of 114 nodes in the mesh. The comparison

with MOL solution obtained with 114 lines reveals that the two

sets agree very well. The discrepancy between the two is less
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Fig. 2. Placement of basis functions of configuration for MOL
formulation.

TABLE I
CAPACITANCEMATRIX FORA 5-STmP TRANSMISSIONLINE

Parameters
a=3.7, b=co X~l = 1.00 X21 = 1.16
21 = Z’ = 0.8 X~2 = 1.23 Xe2 = 1.70

Crl = 2.5, er2 = 1.0 X.3 = 1.77 xe~ = 1.93
X.4 = 2.00 X,4 = 2.47

X.5 = 2.54 Xe5 = 2.70

Dimensions given in ‘mm’

-[

4.683 –2.589 –0.080 –0.064 –0.013
c –2.589 7.934 –2.377 –0.553 –0.064

—— –0.080 –2.377 5.802 –2.377
to

–0.080

–0.064 –0.553 –2.377 7.934 –2.589

–0.013 –0.064 –0.080 –2.589 4.683 !

than 1.6 %. To illustrate the convergence properties of the

SD-FEM with piecewise-linear basis functions, the relative error

curves for two capacitance matrix elements are shown in Fig. 3.

The error is determined by comparing the value of capacitance

computed on a mesh containing N nodes, with the reference

value obtained for the case where N = 212.

An additional numerical aspect of the solution that needs to be

mentioned is the edge condition. Numerical experiments with

SD-FEM, using the formulation (4), show that optimal conver-

gence is obtained when the microstrip edge coincides with a

node. Therefore the discretization process is somewhat simpler

than in the MOL, where the lines adjacent to the edge must be

placed at specific distances to satisfy the edge condition. The

difference in behavior of the two solutions may stem from the

fact that only the first derivative of the solution with respect to x

2.5————

10

N – NUMBER OF NODES

Fig. 3. Convergence curves for two elements of the capacitance matrix.

appears in the !$D-FEM formulation, whereas in the MOL the

second derivative needs to be approximated as well.

VI. CONCLUSION

The semidiscrete finite element method was applied to a static

problem for microstrip lines. Although this method shares the

method of lines’ most important attribute, namely the partial

discretization feature, it possesses different numerical characl:er-

istics. It is more general and versatile, capable of yielding N@OL

as a special case and eliminating the need for complicated

meshes, while simplifying the application of boundary condi-

tions. The advantages of this technique become even more

apparent in 3-D) problems [3].
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